Answer:
1836214271.77724 kg/m³
3268476.80175 m/s²
[tex]-8.14198\times 10^{-24}\ J[/tex]
Explanation:
m = Mass of Sun = [tex]1.989\times 10^{30}\ kg[/tex]
r = Radius of Earth = 6371000 m
Volume of Earth
[tex]V=\frac{4}{3}\pi r^3\\\Rightarrow V=\frac{4}{3}\pi 6371000^3[/tex]
Density is given by
[tex]\rho=\frac{M}{V}\\\Rightarrow \rho=\frac{1.989\times 10^{30}}{\frac{4}{3}\pi 6371000^3}\\\Rightarrow \rho=1836214271.77724\ kg/m^3[/tex]
Density of the Sun would be 1836214271.77724 kg/m³
Acceleration due to gravity is given by
[tex]g=\frac{GM}{r^2}\\\Rightarrow g=\frac{6.67\times 10^{-11}\times 1.989\times 10^{30}}{6371000^2}\\\Rightarrow g=3268476.80175\ m/s^2[/tex]
Acceleration due to gravity on the Sun would be 3268476.80175 m/s²
Potential energy is given by
[tex]U=-\frac{GMm}{r}\\\Rightarrow U=-\frac{6.67\times 1.989\times 10^{30}\times 3.91}{6371000}\\\Rightarrow U=-8.14198\times 10^{-24}\ J[/tex]
The gravitational potential energy associated with the object is [tex]-8.14198\times 10^{-24}\ J[/tex]