Respuesta :
Answer:
a) Thermal conductivity of skin: [tex]k_{skin}=1.5W/mK[/tex]
b) Temperature of interface: [tex]T_{interface}=35.6\°C[/tex]
Heat flux through skin: [tex]\frac{Q}{A}=2100W/m^2[/tex]
Explanation:
a)
[tex]k=\frac{QL}{A(T_{2}-T_{1})}[/tex]
Where: [tex]k[/tex] is thermal conductivity of a material, [tex]\frac{Q}{A}[/tex] is heat flux through a material, [tex]L[/tex] is the thickness of the material, [tex]T_{1}[/tex] is the temperature on the first side and [tex]T_{2}[/tex] is the temperature on the second side
[tex]k_{skin}=\frac{QL}{A(T_{2}-T_{1})}[/tex]
[tex]k_{skin}=\frac{Q}{A}*\frac{L}{(T_{2}-T_{1})}[/tex]
[tex]k_{skin}=1.05*10^{4}*\frac{1*10^{-3}}{(37-30)}[/tex]
[tex]k_{skin}=1.5W/mK[/tex]
b)
[tex]k_{insulation}=\frac{k_{skin}}{2}[/tex]
[tex]k_{insulation}=\frac{1.5}{2}[/tex]
[tex]k_{insulation}=0.75W/mK[/tex]
The heat flux between both surfaces is constant, assuming the temperature is maintained at each surface.
[tex]\frac{Q}{A}=\frac{k(T_{2}-T_{1})}{L}[/tex]
[tex]\frac{k_{skin}(T_{skin}-T_{interface})}{L_{skin}}=\frac{k_{insulation}(T_{interface}-T_{insulation})}{L_{insulation}}[/tex]
[tex]\frac{1.5*(37-T_{interface})}{0.001}=\frac{0.75*(T_{interface}-30)}{0.002}[/tex]
[tex]55500-1500T_{interface}=375T_{interface}-11250[/tex]
[tex]1875T_{interface}=66750[/tex]
[tex]T_{interface}=35.6\°C[/tex]
[tex]\frac{Q}{A}=\frac{k_{skin}(T_{skin}-T_{interface})}{L_{skin}}[/tex]
[tex]\frac{Q}{A}=\frac{1.5*(37-35.6)}{0.001}[/tex]
[tex]\frac{Q}{A}=2100W/m^2[/tex]