Respuesta :

Answer:

x = 28.32 units.

Step-by-step explanation:

Given:

Longer leg = 21

Shorter leg = 19

Hypotenuse = x

To Find:

Hypotenuse = x = ?

Solution:

Pythagoras Theorem States that

[tex](\textrm{Hypotenuse})^{2} = (\textrm{Shorter leg})^{2}+(\textrm{Longer leg})^{2}[/tex]

Substituting of the given value above equation we get

[tex]x^{2} =21^{2}+ 19^{2}\\ \\x^{2}=441 + 361\\\\x^{2}=802\\ \therefore x=\pm\sqrt{802} \\\textrm{as x cannot be negative}\\\therefore x=\sqrt{802}\\\\\therefore x=28.319\ units\\\therefore x=28.32\ units[/tex]

Answer:

[tex]x=28.32\ units[/tex]

Step-by-step explanation:

Given:

Expression for Pythagorean theorem:

[tex]19^2+21^2=x^2[/tex]

By Pythagorean theorem (applied to right triangles only):

[tex]c^2=a^2+b^2[/tex]

where [tex]c[/tex] represents hypotenuse or the longest side of triangle, while [tex]a[/tex] and [tex]b[/tex] represents the other two sides of the triangle.

Solving for hypotenuse i.e. [tex]x[/tex] in the given expression

[tex]x^2=19^2+21^2[/tex]

⇒ [tex]x^2=361+441[/tex]

⇒ [tex]x^2=802[/tex]

Taking square root both sides:

⇒ [tex]\sqrt{x^2}=\sqrt{802}[/tex]

∴ [tex]x=28.32\ units[/tex] (Answer)