Respuesta :
Answer:
x = 28.32 units.
Step-by-step explanation:
Given:
Longer leg = 21
Shorter leg = 19
Hypotenuse = x
To Find:
Hypotenuse = x = ?
Solution:
Pythagoras Theorem States that
[tex](\textrm{Hypotenuse})^{2} = (\textrm{Shorter leg})^{2}+(\textrm{Longer leg})^{2}[/tex]
Substituting of the given value above equation we get
[tex]x^{2} =21^{2}+ 19^{2}\\ \\x^{2}=441 + 361\\\\x^{2}=802\\ \therefore x=\pm\sqrt{802} \\\textrm{as x cannot be negative}\\\therefore x=\sqrt{802}\\\\\therefore x=28.319\ units\\\therefore x=28.32\ units[/tex]
Answer:
[tex]x=28.32\ units[/tex]
Step-by-step explanation:
Given:
Expression for Pythagorean theorem:
[tex]19^2+21^2=x^2[/tex]
By Pythagorean theorem (applied to right triangles only):
[tex]c^2=a^2+b^2[/tex]
where [tex]c[/tex] represents hypotenuse or the longest side of triangle, while [tex]a[/tex] and [tex]b[/tex] represents the other two sides of the triangle.
Solving for hypotenuse i.e. [tex]x[/tex] in the given expression
[tex]x^2=19^2+21^2[/tex]
⇒ [tex]x^2=361+441[/tex]
⇒ [tex]x^2=802[/tex]
Taking square root both sides:
⇒ [tex]\sqrt{x^2}=\sqrt{802}[/tex]
∴ [tex]x=28.32\ units[/tex] (Answer)