Answer: 0.8137
Step-by-step explanation:
As per given , we have
[tex]\mu= 17.2\ ,\ \sigma=2.5[/tex]
Sample size : n= 47
Let [tex]\overline{X}[/tex] be the sample mean o.
Then, the probability that the mean of a sample of 47 families will be between 16.6 and 17.6 pounds will be :
[tex]P(16.6<x<17.6)=P(\dfrac{16.6-17.2}{\dfrac{2.5}{\sqrt{47}}}<\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}<\dfrac{17.6-17.2}{\dfrac{2.5}{\sqrt{47}}})[/tex]
[tex]=P(-1.645<z<1.097)[/tex]
[∵ [tex]z= \dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]]
[tex]=P(z<1.097)-P(z<-1.645)\\\\=P(z<1.097)-(1-P(z<1.645))\ \ [\because\ P(Z<-z)=1-P(Z<z)][/tex]
[tex]=0.8636793-(1- 0.9500151)[/tex] [By using p-value calculator]
[tex]=0.8636793-0.0499849=0.8136944\approx0.8137[/tex]
Hence, the probability that the mean of a sample of 47 families will be between 16.6 and 17.6 pounds= 0.8137