Respuesta :

Answer:

The value of car after n years at the depreciation rate is                              $ 50,000 [tex](0.9)^{n}[/tex]  .

Step-by-step explanation:

Given as :

The cost of the car that Jill bought = $ 50,000

The depreciation rate of car value = r = 10 % a years

Let The car after n years of depreciation = $ A

Now, According to question

The cost of car after n years of depreciation = initial cost of car × [tex](1 - \dfrac{\textrm rate}{100})^{\textrm time}[/tex]

Or, $ A = $50,000 × [tex](1 - \dfrac{\textrm r}{100})^{\textrm n}[/tex]

Or, $ A = $50,000 × [tex](1 - \dfrac{\textrm 10}{100})^{\textrm n}[/tex]

Or, $ A = $50,000 × [tex](\frac{90}{100})^{n}[/tex]

I.e $ A = $50,000 × [tex](0.9)^{n}[/tex]

So, value of car after n years = $ 50,000 [tex](0.9)^{n}[/tex]

Hence The value of car after n years at the depreciation rate is                      $ 50,000 [tex](0.9)^{n}[/tex]  . Answer