Answer : The correct option is, (C) [tex]403.6cm^3[/tex]
Explanation :
The formula used for the volume expansion coefficient is:
[tex]V_{final}=V_{initial}\times (1+\gamma \Delta T)[/tex]
where,
[tex]V_{final}[/tex] = final volume of mercury = ?
[tex]V_{initial}[/tex] = initial volume of mercury = [tex]400.0cm^3[/tex]
[tex]\gamma[/tex] = volume expansion coefficient = [tex]180\times 10^{-6}K^{-1}[/tex]
[tex]\Delta T[/tex] = change in temperature = [tex]50^oC-0^oC=50^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]V_{final}=400.0\times [1+(180\times 10^{-6}\times 50)][/tex]
[tex]V_{final}=403.6cm^3[/tex]
Therefore, the final volume of mercury is [tex]403.6cm^3[/tex]