Respuesta :
Answer: 430 nm.
Explanation:
The relation of wavelength and frequency is:
Formula used : [tex]\nu=\frac{c}{\lambda}[/tex]
where,
[tex]\nu[/tex] = frequency =[tex]6.88\times 10^{14}Hz[/tex]
[tex]\lambda[/tex] = wavelength = ?
c = speed of light = [tex]3.00\times 10^{8}m/s[/tex]
Now put all the given values in this formula, we get
[tex]6.88\times 10^{14}=\frac{3.00\times 10^{8}m/s}{\lambda}[/tex]
[tex]\lambda=\frac{3.00\times 10^{8}m/s}{6.88\times 10^{14}}=0.43\times 10^{-6}m=430m[/tex] [tex](1nm=10^{-9}m)[/tex]
Thus the wavelength (in nm) of the blue light emitted by a mercury lamp is 430 nm.
Answer:
The wavelength of blue-light is [tex]2.064 \times 10^{32} \;\rm m[/tex].
Explanation:
Given data:
The frequency of light is, [tex]f=6.88 \times 10^{14} \;\rm Hz[/tex].
The speed of light is, [tex]c=3.00 \times 10^{8} \;\rm m/s[/tex].
The expression for the frequency of light is,
[tex]f= \dfrac{c}{ \lambda}[/tex]
Here, [tex]\lambda[/tex] is the wavelength of light.
Solve by substituting the values as,
[tex]6.88\times 10^{14}= \dfrac{3.00 \times 10^{8}}{ \lambda}\\\lambda = (6.88\times 10^{14}) \times (3.00 \times 10^{8})\\\lambda =2.064 \times 10^{23} \;\rm m\\\lambda = 2.064 \times 10^{23} \times 10^{9} \\\lambda = 2.064 \times 10^{32} \;\rm nm[/tex]
Thus, the wavelength of blue-light is [tex]2.064 \times 10^{32} \;\rm nm[/tex].
For more details, refer to the link:
https://brainly.com/question/13104367?referrer=searchResults