Calculate the wavelength (in nm) of the blue light emitted by a mercury lamp with a frequency of 6.88 × 1014 Hz. The speed of light is 3.00 × 108 m/s. and

Respuesta :

Answer: 430 nm.

Explanation:

The relation of wavelength and frequency is:

Formula used : [tex]\nu=\frac{c}{\lambda}[/tex]

where,

[tex]\nu[/tex] = frequency =[tex]6.88\times 10^{14}Hz[/tex]

[tex]\lambda[/tex] = wavelength  = ?

c = speed of light = [tex]3.00\times 10^{8}m/s[/tex]

Now put all the given values in this formula, we get

[tex]6.88\times 10^{14}=\frac{3.00\times 10^{8}m/s}{\lambda}[/tex]

[tex]\lambda=\frac{3.00\times 10^{8}m/s}{6.88\times 10^{14}}=0.43\times 10^{-6}m=430m[/tex]        [tex](1nm=10^{-9}m)[/tex]

Thus the wavelength (in nm) of the blue light emitted by a mercury lamp is 430 nm.

Answer:

The wavelength of blue-light is [tex]2.064 \times 10^{32} \;\rm m[/tex].

Explanation:

Given data:

The frequency of light is, [tex]f=6.88 \times 10^{14} \;\rm Hz[/tex].

The speed of light is, [tex]c=3.00 \times 10^{8} \;\rm m/s[/tex].

The expression for the frequency of light is,

[tex]f= \dfrac{c}{ \lambda}[/tex]

Here, [tex]\lambda[/tex] is the wavelength of light.

Solve by substituting the values as,

[tex]6.88\times 10^{14}= \dfrac{3.00 \times 10^{8}}{ \lambda}\\\lambda = (6.88\times 10^{14}) \times (3.00 \times 10^{8})\\\lambda =2.064 \times 10^{23} \;\rm m\\\lambda = 2.064 \times 10^{23} \times 10^{9} \\\lambda = 2.064 \times 10^{32} \;\rm nm[/tex]

Thus, the wavelength of blue-light is [tex]2.064 \times 10^{32} \;\rm nm[/tex].

For more details, refer to the link:

https://brainly.com/question/13104367?referrer=searchResults