Answer:
Step-by-step explanation:
Let the rent one chair is C and the rent for one table is T.
As per the given condition,
[tex]5 \timesC + 3 \timesT[/tex] = 30................(1)
[tex]2 \timesC + 6 \timesT[/tex] = 42................(2)
Multiplying the equation (1) with 2 and (2) with 5, then subtracting, we get [tex]24 \timesT[/tex] = 210 - 60
[tex]24 \timesT[/tex] = 150
T = [tex]\frac{50}{8}[/tex]
T = 6.25
Putting the value of T in equation (1) we get,
[tex]5 \timesC + 3 \times6.25[/tex] = 30
[tex]5 \timesC[/tex] = 30 - 3 \times6.25[/tex]
[tex]5 \timesC[/tex] = 11.25
C = [tex]\frac{11.25}{5}[/tex]
C = 2.25