Respuesta :

Answer:

The line passes through the points ( 0 , 4 ) and ( 12 , 0 )

Step-by-step explanation:

Given equation of line as :

y = - [tex]\frac{1}{3}[/tex] x + 4

Let the points through which the line passes are

( [tex]x_1[/tex] , [tex]y_1[/tex] ) , ( [tex]x_2[/tex] , [tex]y_2[/tex] )

Now, for x = 0 , The line equation is y = - [tex]\frac{1}{3}[/tex] × 0 + 4

I.e for x = 0 , y = 0 + 4 = 4

So,  ( [tex]x_1[/tex] , [tex]y_1[/tex] ) = ( 0 , 4 )

Again , for y = 0 , The line equation is 0 = - [tex]\frac{1}{3}[/tex] × x + 4

I.e  for y = 0 , The line equation is 4 = [tex]\frac{x}{3}[/tex]

Or, for y = 0 , x = 4 × 3 = 12

So , ( [tex]x_2[/tex] , [tex]y_2[/tex] ) = ( 12 , 0 )

Hence The line passes through the points ( 0 , 4 ) and ( 12 , 0 )  Answer

Answer:

The points are (12, 0) & (0, 4).

Step-by-step explanation:

The given equation of line is-

    y =  -[tex]\frac{1}{3}[/tex] x + 4...............................(i)

After taking L.C.M. both sides (i.e. Multiplying  by 3 both sides)-

   3 y = -x + 12.................................(ii)

 Let x = 0 in equation (ii)-

     3 y = 12

       y = 4

Hence first point is ( 0, 4).

Now, let y = 0 in equation (ii)-

    0 = - x + 12

    -12 = - x

     x = 12

therefore the points are ( 12, 0).

Hence the required points which passes through the line y = -1/3 x +4 are (0, 4) & ( 12, 0).