Answer:
14.4259 m
Explanation:
F = Force on string = 170 N
[tex]\mu[/tex] = Linear density = 6.6 g/m
L = Length of string = 2.25 m
n = Mode = 3
[tex]L_t[/tex] = Length of tube
v = Speed of sound in air = 343 m/s
Speed of wave is given by
[tex]u=\sqrt{\frac{F}{\mu}}\\\Rightarrow u=\sqrt{\frac{170}{6.6\times 10^{-3}}}\\\Rightarrow u=160.492\ m/s[/tex]
Frequency of wave of the string is given by
[tex]f_s=\frac{u}{2L}\\\Rightarrow f_s=\frac{160.492}{2\times 2.25}\\\Rightarrow f_s=35.665\ Hz[/tex]
Frequency of wave of the tube is given by
[tex]f_t=\frac{nv}{2L_t}\\\Rightarrow L_t=\frac{nv}{2f_t}\\\Rightarrow L_t=\frac{3\times 343}{2\times 35.665}\\\Rightarrow L_t=14.4259\ m[/tex]
The length of the tube is 14.4259 m