Answer:
The given triangle ∆WYX is isosceles triangle.
Step-by-step explanation:
Given points are W(-10,4), X(-3,-1), and Y(-5,11) form triangle.
Distance between two points are given as
L=[tex]\sqrt{(X2-X1)^{2} + (Y2-Y1)^{2} }[/tex]
Now, Distance between W(-10,4) and X(-3,-1) is
WX=[tex]\sqrt{(X2-X1)^{2} + (Y2-Y1)^{2} }[/tex]
=[tex]\sqrt{((-3)-(-10))^{2} + ((-1)-(4))^{2} }[/tex]
=[tex]\sqrt{(7)^{2} + (-5)^{2} }[/tex]
=8.48
Now, Distance between W(-10,4) andY(-5,11) is
WY=[tex]\sqrt{(X2-X1)^{2} + (Y2-Y1)^{2} }[/tex]
=[tex]\sqrt{((-5)-(-10))^{2} + (11-4)^{2} }[/tex]
=[tex]\sqrt{(5)^{2} + (7)^{2} }[/tex]
=8.48
Now, Distance between X(-3,-1) andY(-5,11) is
XY=[tex]\sqrt{(X2-X1)^{2} + (Y2-Y1)^{2} }[/tex]
=[tex]\sqrt{((-5)-(-3))^{2} + (11-(-1))^{2} }[/tex]
=[tex]\sqrt{(-2)^{2} + (12)^{2} }[/tex]
=12.165
Since, WY=WX
The given triangle ∆WYX is isosceles triangle.