Respuesta :
Parameterize the surface (call it [tex]S[/tex]) that has [tex]C[/tex] as its boundary by
[tex]\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+(81-u^2)\,\vec k[/tex]
with [tex]0\le u\le9[/tex] and [tex]0\le v\le2\pi[/tex].
Take the normal vector to [tex]S[/tex] to be
[tex]\vec n=\dfrac{\partial\vec s}{\partial u}\times\dfrac{\partial\vec s}{\partial v}=2u^2\cos v\,\vec\imath+2u^2\sin v\,\vec\jmath+u\,\vec k[/tex]
Compute the curl of [tex]\vec F(x(u,v),y(u,v),z(u,v))=\vec F(u,v)[/tex]. We have
[tex]\nabla\times\vec F(x,y,z)=4y\,\vec\imath-4x\,\vec\jmath[/tex]
[tex]\implies\nabla\times\vec F(u,v)=4u\sin v\,\vec\imath-4u\cos v\,\vec\jmath[/tex]
Then by Stoke's theorem, the line integral is
[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\iint_S(\nabla\times\vec F(x,y,z))\cdot\mathrm d\vec S[/tex]
[tex]=\displaystyle\iint_S(\nabla\times\vec F(u,v))\cdot\vec n\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\int_0^{2\pi}\int_0^90\,\mathrm du\,\mathrm dv=\boxed{0}[/tex]
We can verify this result by computing the line integral directly. Parameterize [tex]C[/tex] by
[tex]\vec r(t)=9\cos t\,\vec\imath+9\sin t\,\vec\jmath[/tex]
with [tex]0\le t\le2\pi[/tex]. Then
[tex]\displaystyle\int_C\vec F(x,y,z)\cdot\mathrm d\vec r=\int_0^{2\pi}\vec F(t)\cdot\frac{\mathrm d\vec r}{\mathrm dt}\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^{2\pi}(9\cos t\,\vec\imath+9\sin t\,\vec\jmath+162\,\vec k)\cdot(-9\sin t\,\vec\imath+9\cos t\,\vec\jmath)\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^{2\pi}0\,\mathrm dt=\boxed{0}[/tex]
By applying Stokes theorem, the value of the integral is equal to zero (0).
How to apply the Stoke theorem?
First of all, we would use Stoke's theorem to convert the integral as follows:
[tex]\int_s(\Delta \times F).mds = \int_c Fdr[/tex]
where:
c represents the boundary circle on the xy-plane.
We know that F(x, y, z) = xi + yj + 2(x² + y²)k. Thus, we would compute the curl of F by using a matrix:
[tex]\Delta \times F = \left[\begin{array}{ccc}i&j&k\\d/dx&d/dy&d/dz\\x&y&2(x^2 +y^2)\end{array}\right][/tex]
Δ × F = i(4y) - j(4x)
Δ × F = 4yî - 4j
By taking the normal vector of S, we have:
S; x² + y² + z² - 81 = 0
ds = 2xî + 2yj + 2zk
By applying Stoke's theorem, the line integral is given by:
(Δ × F) . ds = (4yî - 4j) . (2xî + 2yj + 2zk)
(Δ × F) . ds = 8xy - 8xy + 0
(Δ × F) . ds = 0.
∫cF⋅dr = 0.
Read more on Stoke's theorem here: https://brainly.com/question/13105453
#SJP1