A rectangle is graphed on the coordinate grid. Which represents the equation of a side that is perpendicular to side k

A. Y=1/4x-10
B. Y=-1/4x-10
C. Y=4x+24
D. Y=4x-10

A rectangle is graphed on the coordinate grid Which represents the equation of a side that is perpendicular to side k A Y14x10 B Y14x10 C Y4x24 D Y4x10 class=

Respuesta :

Answer:

B. [tex]y=-\frac{1}{4}x-10[/tex]

Step-by-step explanation:

Given rectangle with sides J,K,L and M.

We need to find equation of sides that are perpendicular to side K.

For a rectangle adjacent sides are perpendicular to each other.

For side K, the adjacent sides are J and L. Hence, sides J and L are perpendicular to side L.

Finding equation of side J.

Points: (-5,4) and (3,2)

Slope of line [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points on the line.

Thus [tex]m=\frac{2-4}{3-(-5)}[/tex]

[tex]m=\frac{2-4}{3+5}[/tex]

[tex]m=\frac{-2}{8}[/tex]

Simplifying fraction.

[tex]m=-\frac{1}{4}[/tex]

Using point-slope equation to find equation of the line.

[tex](y-y_1)=m(x-x_1)[/tex]

Using point (-5,4)

[tex](y-4)=-\frac{1}{4}(x-(-5))[/tex]

[tex](y-4)=\-frac{1}{4}(x+5))[/tex]

Using distribution

[tex](y-4)=-\frac{1}{4}x-\frac{5}{4}[/tex]

Adding 4 to both sides.

[tex]y-4+4=-\frac{1}{4}x-\frac{5}{4}+4[/tex]

Taking LCD to add fraction.

[tex]y=-\frac{1}{4}x-\frac{5}{4}+\frac{16}{4}[/tex]

Equation of side J.

[tex]y=-\frac{1}{4}x-\frac{11}{4}[/tex]

Finding equation of side L.

Points: (-8,-8) and (0,-10)

Slope of line [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points on the line.

Thus [tex]m=\frac{-10-(-8)}{0-(-8)}[/tex]

[tex]m=\frac{-10+8}{0+8}[/tex]

[tex]m=\frac{-2}{8}[/tex]

Simplifying fraction.

[tex]m=-\frac{1}{4}[/tex]

Using point-slope equation to find equation of the line.

[tex](y-y_1)=m(x-x_1)[/tex]

Using point (0,-10)

[tex](y-(-10))=-\frac{1}{4}(x-0)[/tex]

[tex]y+10=-\frac{1}{4}x[/tex]

Subtracting both sides by 10.

[tex]y+10-10=-\frac{1}{4}x-10[/tex]

Equation of side L.

[tex]y=-\frac{1}{4}x-10[/tex]

The equation of side perpendicular to side K is represented by

[tex]y=-\frac{1}{4}x-10[/tex]