a child operating a radio-controlled model car on a dock accidentally steers it off the edge. the car's displacement 0.70 s after leaving the dock has a magnitude of 8.0 m. what is the car's speed at the instant it drives off the edge of the dock?

Respuesta :

Answer:

[tex]v_{0x} = 10.90\ m/s[/tex]

Explanation:

given,

time = 0.7 s

displacement of the car = r = 8 m

vertical displacement of the car

using equation of motion

[tex]y= ut + \dfrac{1}{2}gt^2[/tex]

initial velocity of the car is equal to zero

[tex]y=\dfrac{1}{2}gt^2[/tex]

now, horizontal distance traveled by the car

r² = x² + y²

[tex]x = \sqrt{r^2-y^2}[/tex]

[tex]v_{0x} =\dfrac{x}{t}[/tex]

[tex]v_{0x} =\dfrac{\sqrt{r^2-y^2}}{t}[/tex]

[tex]v_{0x} =\dfrac{\sqrt{r^2-(\dfrac{1}{2}gt^2)^2}}{t}[/tex]

[tex]v_{0x} =\dfrac{\sqrt{8^2-(\dfrac{1}{2}(-9.8)\times 0.7^2)^2}}{0.7}[/tex]

[tex]v_{0x} = 10.90\ m/s[/tex]

Ver imagen wagonbelleville