Which value for x makes the sentence true?

Answer:
D
Step-by-step explanation:
Given
- [tex]\frac{2}{5}[/tex] + x = [tex]\frac{8}{3}[/tex]
Add [tex]\frac{2}{5}[/tex] to both sides
x = [tex]\frac{8}{3}[/tex] + [tex]\frac{2}{5}[/tex]
Before adding the fractions we require them to have a common denominator
Multiply the numerator/ denominator of the first fraction by 5 and
Multiply the numerator/ denominator of the second fraction by 3
x = [tex]\frac{8(5)}{3(5)}[/tex] + [tex]\frac{2(3)}{5(3)}[/tex]
= [tex]\frac{40}{15}[/tex] + [tex]\frac{6}{15}[/tex]
Now add the numerators leaving the denominator
x = [tex]\frac{40+6}{15}[/tex] = [tex]\frac{46}{15}[/tex] → D