A student mixes in a test tube 3.00mL of 0.050M CuSO4with 7.00mL of 0.20M NH3/NH41 . The solution becomes a deep blue color. Assuming all the Cu2 is complexed with NH3to form the [Cu(NH3)4]2 ion, determine the concentration of the complex in the solution.

Respuesta :

znk

Answer:

[tex]\large \boxed{\text{0.0035 mol/L}}[/tex]

Explanation:

We are given the volumes and concentrations of two reactants, so this is a limiting reactant problem.

We know that we will need moles, so, lets assemble all the data in one place.

                   Cu²⁺ + 4NH₃ ⟶ Cu(NH₃)₄²⁺

    V/mL:   3.00      7.00

c/mol·L⁻¹:  0.050   0.20

1. Identify the limiting reactant

(a) Calculate the moles of each reactant  

[tex]\text{Moles of Cu}^{2+}= \text{3.00 mL solution} \times \dfrac{\text{0.050 mmol Cu}^{2+}}{\text{1 mL solution}} = \text{0.150 mmol Cu}^{2+}\\\\\text{Moles of NH}_{3} = \text{7.00 mL solution} \times \dfrac{\text{0.20 mmol NH}_{3}}{\text{1 mL solution}} = \text{0.140 mmol NH}_{3}[/tex]

(b) Calculate the moles of Cu(NH₃)₄²⁺ that can be formed from each reactant

(i) From Cu²⁺

[tex]\text{Moles of Cu(NH$_{3}$)$_{4}$^{2+}$} = \text{0.150 mmol Cu}^{2+} \times \dfrac{\text{1 mmol Cu(NH$_{3}$)$_{4}$^{2+}$}}{\text{1 mmol Cu}^{2+}}\\\\= \text{0.150 mmol Cu(NH$_{3}$)$_{4}$^{2+}$}[/tex]

(ii) From NH₃

[tex]\text{Moles of Cu(NH$_{3}$)$_{4}$^{2+}$} = \text{0.140 mmol NH}_{3} \times \dfrac{\text{1 mmol Cu(NH$_{3}$)$_{4}$^{2+}$}}{\text{4 mmol NH}_{3}}\\\\= \text{0.0350 mmol Cu(NH$_{3}$)$_{4}$^{2+}$}[/tex]

NH₃ is the limiting reactant, because it forms fewer moles of the complex ion.

(c) Concentration of the complex ion

[tex]\text{The reaction forms 0.0350 mmol Cu(NH$_{3}$)$_{4}$^{2+}$ in a total volume of 10.00 mL.}\\c = \dfrac{\text{moles}}{\text{litres}} = \dfrac{\text{0.0350 mmol}}{\text{10.00 mL}} = \textbf{0.0035 mol/L}\\\\\text{The concentration of the complex ion is $\large \boxed{\textbf{0.0035 mol/L}}$}[/tex]