Answer:
[tex]E_r(6)=4.35614\ MPa[/tex]
Explanation:
[tex]\epsilon[/tex] = Strain = 0.49
[tex]\sigma _0[/tex] = 3.1 MPa
At t = Time = 32 s [tex]\sigma[/tex] = 0.41 MPa
[tex]\tau[/tex] = Time-independent constant
Stress relation with time
[tex]\sigma=\sigma _0exp\left(-\frac{t}{\tau}\right)[/tex]
at t = 32 s
[tex]0.41=3.1exp\left(-\frac{32}{\tau}\right)\\\Rightarrow exp\left(-\frac{32}{\tau}\right)=\frac{0.41}{3}\\\Rightarrow -\frac{32}{\tau}=ln\frac{0.41}{3}\\\Rightarrow \tau=-\frac{32}{ln\frac{0.41}{3}}\\\Rightarrow \tau=16.0787\ s[/tex]
The time independent constant is 16.0787 s
[tex]E_{r}(t)=\frac{\sigma(t)}{\epsilon_0}[/tex]
At t = 6
[tex]\\\Rightarrow E_{r}(6)=\frac{\sigma(6)}{\epsilon_0}[/tex]
From the first equation
[tex]\sigma(t)=\sigma _0exp\left(-\frac{t}{\tau}\right)\\\Rightarrow \sigma(6)=3.1exp\left(-\frac{6}{16.0787}\right)\\\Rightarrow \sigma(6)=2.13451[/tex]
[tex]E_r(6)=\frac{2.13451}{0.49}\\\Rightarrow E_r(6)=4.35614\ MPa[/tex]
[tex]E_r(6)=4.35614\ MPa[/tex]