If the diameter of a circle is 6 inches, how long is the arc subtended by an angle measuring 70°? A) 3 7 π inches B) 6 7 π inches C) 7 2 π inches D) 7 6 π inches

Respuesta :

Option D

The length of arc is [tex]\frac{7}{6} \pi[/tex] inches

Solution:

Given that diameter of a circle is 6 inches

To find: length of arc subtended by an angle measuring [tex]70^\circ[/tex]

The length of arc when angle is measured in degrees is given as:

[tex]\text {arc length }=\frac{\theta}{360} \times 2 \pi r[/tex]

Where,

[tex]\theta[/tex] is the central angle in degrees

"r" is the radius of circle

Given that diameter  = 6 inches

[tex]Radius = \frac{diameter}{2}[/tex]

[tex]radius = \frac{6}{2} = 3 inches[/tex]

Substitiute r = 3 inches and [tex]\theta = 70 degrees[/tex] in arc length formula

[tex]\begin{array}{l}{\text { arc length }=\frac{70}{360} \times 2 \pi(3)} \\\\ {\text { arc length }=\frac{7}{36} \times 6 \pi=\frac{7}{6} \pi}\end{array}[/tex]

Thus length of arc is [tex]\frac{7}{6} \pi[/tex] inches So option D is correct