Answer:
27.7 units
Step-by-step explanation:
The distance between points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] can be calculated using formula
[tex]\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]
Find the lengths of the sides of DEF using previous formula:
[tex]DE=\sqrt{(-5-4)^2+(2-6)^2}=\sqrt{81+16}=\sqrt{97}\approx 9.85\ units\\ \\EF=\sqrt{(4-2)^2+(6-(-3))^2}=\sqrt{4+81}=\sqrt{85}\approx 9.22\ units\\ \\DF=\sqrt{(-5-2)^2+(2-(-3))^2}=\sqrt{49+25}=\sqrt{74}\approx 8.60\ units[/tex]
Hence, the perimeter is
[tex]P_{FED}=9.85+9.22+8.60=27.67\approx 27.7\ units[/tex]