Respuesta :
Answer:
[tex]v_{2.6b}=11.18\ m.s^{-1}[/tex]
[tex]v_{7.2b}=14.19\ m.s^{-1}[/tex]
[tex]s_{bb}=226.3305\ m[/tex]
[tex]a_{db}=-3.7386\ m.s^{-2}[/tex] negative sign denotes deceleration.
[tex]t_b=21.3956\ s[/tex]
[tex]a_y=1.1065\ m.s^{-2}[/tex]
Explanation:
Given:
- initial speed of blue car, [tex]u_b=0\ m.s^{-1}[/tex]
- initial speed of yellow car, [tex]u_y=0\ m.s^{-1}[/tex]
- acceleration rate of blue car, [tex]a_b=4.3\ m.s^{-2}[/tex]
- time for which the blue car accelerates, [tex]t_{ab}=3.3\ s[/tex]
- time for which the blue car moves with uniform speed before decelerating, [tex]t_{ub}=14.3\ s[/tex]
- total distance covered by the blue car before coming to rest, [tex]s_b=253.26 \ m[/tex]
- distance at which the the yellow car intercepts the blue car just as the blue car come to rest, [tex]s_y=253.26 \ m[/tex]
1)
Speed of blue car after 2.6 seconds of starting the motion:
Applying the equation of motion:
[tex]v_{2.6b}=u_b+a_b.t[/tex]
[tex]v_{2.6b}=0+4.3\times 2.6[/tex]
[tex]v_{2.6b}=11.18\ m.s^{-1}[/tex]
Speed of blue car after 7.2 seconds of starting the motion:
∵The car accelerates uniformly for 3.3 seconds after which its speed becomes uniform for the next 14.3 second before it applies the brake.
so,
[tex]v_{7.2b}=u+a_b\times t_{ab}[/tex]
[tex]v_{7.2b}=0+4.3\times 3.3[/tex]
[tex]v_{7.2b}=14.19\ m.s^{-1}[/tex]
Distance travelled by the blue car before application of brakes:
This distance will be [tex]s_{bb}=[/tex] (distance travelled during the accelerated motion) + (distance travelled at uniform motion)
Now the distance travelled during the accelerated motion:
[tex]s_{ab}=u_b.t_{ab}+\frac{1}{2} a_{b}.t_{ab}^2[/tex]
[tex]s_{ab}=0\times 3.3+0.5\times 4.3\times 3.3^2[/tex]
[tex]s_{ab}=23.4135\ m[/tex]
Now the distance travelled at uniform motion:
[tex]s_{ub}=14.19\times 14.3[/tex]
[tex]s_{ub}=202.917\ m[/tex]
Finally:
[tex]s_{bb}=s_{ab}+s_{ub}[/tex]
[tex]s_{bb}=23.4135+202.917[/tex]
[tex]s_{bb}=226.3305\ m[/tex]
Acceleration of the blue car once the brakes are applied
Here we have:
initial velocity, [tex]u=14.19\ m.s^{-1}[/tex]
final velocity, [tex]v=0\ m.s^{-1}[/tex]
distance covered while deceleration, [tex]s_{db}=s_b-s_{bb}[/tex]
[tex]\Rightarrow s_{db}=253.26 -226.3305=26.9295\ m[/tex]
Using the equation of motion:
[tex]v^2=u^2+2a_{db}.s_{db}[/tex]
[tex]0^2=14.19^2+2\times a_{db}\times 26.9295[/tex]
[tex]a_{db}=-3.7386\ m.s^{-2}[/tex] negative sign denotes deceleration.
The total time for which the blue car moves:
[tex]t_b=t_a+t_{ub}+t_{db}[/tex] ........................(1)
Now the time taken to stop the blue car after application of brakes:
Using the eq. of motion:
[tex]v=u+a_{db}.t_{db}[/tex]
[tex]0=14.19-3.7386\times t_{db}[/tex]
[tex]t_{db}=3.7956\ s[/tex]
Putting respective values in eq. (1)
[tex]t_b=3.3+14.3+3.7956[/tex]
[tex]t_b=21.3956\ s[/tex]
For the acceleration of the yellow car:
We apply the law of motion:
[tex]s_y=u_y.t_y+\frac{1}{2} a_y.t_y^2[/tex]
Here the time taken by the yellow car is same for the same distance as it intercepts just before the stopping of blue car.
Now,
[tex]253.26=0\times 21.3956+0.5\times a_y\times 21.3956^2[/tex]
[tex]a_y=1.1065\ m.s^{-2}[/tex]