A satellite of mass 190 kg is placed into Earth orbit at a height of 850 km above the surface.
(a) Assuming a circular orbit, how long does the satellite take to complete one orbit?
(b) What is the satellite's speed?
(c) Starting from the satellite on the Earth's surface, what is the minimum energy input necessary to place this satellite in orbit? Ignore air resistance but include the effect of the planet's daily rotation.

Respuesta :

Answer:

Explanation:

Time period of satellite

a )T = [tex]\frac{2\pi\times(R+h)^\frac{3}{2} }{\sqrt{GM}}[/tex]

Where G is gravitational constant , M is mass of the earth , R is radius of the earth and h is height of satellite .

[tex]\frac{2\pi\times(6378+850)^\frac{3}{2}\times10^{4.5} }{\sqrt{6.67\times10^{-11}\times5.97\times10^{24}} }[/tex]

= 6273 s

= 104.5 minutes

b )

Orbital speed of satellite

v_o = [tex]\sqrt{\frac{GM}{(R+h)} }[/tex]

= [tex]\sqrt{\frac{6.6\times10^{-11}\times5.97\times10^{24}}{(6378+850)\times10^3} }[/tex]

= 7.38 km /s

c )

Orbital energy

= [tex]\frac{-GM}{2(R+h)} }[/tex]

= [tex]\frac{-6.67\times10^{-11}\times5.67\times10^{24}}{2(6378+850)\times10^3} }[/tex]

= - 2.6 x 10⁷ J

Potential energy on the surface

= - GM / R

=- 6.67 x 10⁻¹¹ x 5.67 x 10²⁴ / 6378 x 10³

- 5.93 x 10⁷

Energy required to place the satellite in orbit at height h

= 5.93 x 10⁷  - 2.6 x 10⁷

= 3.33 x 10⁷ J

Lanuel

Assuming a circular orbit, the time period required by the satellite to complete one orbit is 6118.59 secs.

Given the following data:

  • Mass of satellite = 190 kg.
  • Height = 850 km.

Scientific data:

  • Radius of Earth = [tex]6.37\times 10^6\;m[/tex].
  • Gravitational constant = [tex]6.67 \times 10^{-11}[/tex]
  • Mass of Earth = [tex]5.972\times 10^{24}[/tex] kg

How to calculate the time period.

From Kepler’s Law for elliptic motion, the time period required by the satellite to complete one orbit is given by this formula:

[tex]T=\sqrt{\frac{4\pi^2 R^3}{GM} } \\\\T=\sqrt{\frac{4\pi^2 (850 \times 10^3+6.37\times 10^6)^3}{6.67 \times 10^{-11} \times 5.972\times 10^{24}} }\\\\T=\sqrt{\frac{1.49 \times 10^{22} }{3.98 \times 10^{14} } } \\\\T=\sqrt{37437185.93 }[/tex]

T = 6118.59 secs.

b. To determine the satellite's speed:

Mathematically, the satellite's speed is given by this formula:

[tex]V=\frac{2\pi \times (850 \times 10^3+6.37\times 10^6)}{6118.59} \\\\V=\frac{45370480}{6118.59}[/tex]

V = 7415 m/s.

c. To determine the minimum energy input that is necessary to place this satellite in orbit:

[tex]\Delta E=\frac{1}{2} m(v^2-v_e^2)+GMm(\frac{1}{r} -\frac{1}{R} )\\\\\Delta E=\frac{1}{2} \times 190(7415^2-463.24^2)+6.67 \times 10^{-11} \times 5.972\times 10^{24} \times 190 (\frac{1}{6.37 \times 10^6} -\frac{1}{850 \times 10^3+6.37\times 10^6} )\\\\\Delta E=95(54767633.7)+7.57\times 10^{16}(1.57\times 10^{-7}-1.39\times 10^{-7})\\\\\Delta E=5202925201.5+7.57\times 10^{16}(1.8\times 10^{-8})\\\\\Delta E=5202925201.5+1362600000\\\\\Delta E=6.57 \times 10^{9}\;Joules.[/tex]

Read more on Kepler's law here: brainly.com/question/6867220