Answer:38.66 m
Explanation:
Given
launch angle [tex]\theta =51^{\circ}[/tex]
launch velocity [tex]u=18 m/s[/tex]
center of mass continue to travel its original Path so it center of mass will be at a distance of
[tex]R=\frac{u^2\sin 2\theta }{g}[/tex]
[tex]R=\frac{18^2\sin 102}{9.8}[/tex]
[tex]R=32.33 m[/tex]
Center of mass will be at [tex]x=32.33 m[/tex]
(b)if one of the piece will be at x=26 m then other will be at
[tex]x_{com}=\frac{m_1x_1+m_2x_2}{m_1+m_2}[/tex]
[tex]x_{com}=\frac{\frac{m}{2}\cdot 26+\frac{m}{2}\cdot x_0}{\frac{m}{2}+\frac{m}{2}}[/tex]
[tex]32.33=\frac{26+x_0}{2}[/tex]
[tex]x_0=38.66 m[/tex]