Answer:
10.207377 MeV
10.833345 MeV
Explanation:
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
The reaction to remove a proton is as follows
[tex]^{15}_7N=^{14}_6C+^{1}_1H[/tex]
From the mass energy equivalence
[tex]E=(14.003242+1.007825-15.000109)u\times (c)^2\\\Rightarrow E=0.010958uc^2\\\Rightarrow E=0.010958\times 931.5\\\Rightarrow E=10.207377\ MeV[/tex]
The energy is required to remove a proton is 10.207377 MeV
The reaction to remove a proton is as follows
[tex]^{15}_7N=^{14}_7N+n[/tex]
From the mass energy equivalence
[tex]E=(14.003074+1.008665-15.000109)u\times (c)^2\\\Rightarrow E=0.01136uc^2\\\Rightarrow E=0.01163\times 931.5\\\Rightarrow E=10.833345\ MeV[/tex]
Mass of [tex]^{14}_7N=14.003074u[/tex]
The energy is required to remove a neutron is 10.833345 MeV