Respuesta :
Answer:
[tex]\large \boxed{\text{ 0.066 mol/L}}[/tex]
Explanation:
We are given the amounts of two reactants, so this is a limiting reactant problem.
1. Assemble all the data in one place, with molar masses above the formulas and other information below them.
Mᵣ: 58.44
NaCl + AgNO₃ ⟶ NaNO₃ + AgCl
m/g: 0.245
V/mL: 50.
c/mmol·mL⁻¹: 0.0180
2. Calculate the moles of each reactant
[tex]\text{Moles of NaCl} = \text{245 mg NaCl} \times \dfrac{\text{1 mmol NaCl}}{\text{58.44 mg NaCl}} = \text{4.192 mmol NaCl}\\\\\text{ Moles of AgNO}_{3}= \text{50. mL AgNO}_{3} \times \dfrac{\text{0.0180 mmol AgNO}_{3}}{\text{1 mL AgNO}_{3}} = \text{0.900 mmol AgNO}_{3}[/tex]
3. Identify the limiting reactant
Calculate the moles of AgCl we can obtain from each reactant.
From NaCl:
The molar ratio of NaCl to AgCl is 1:1.
[tex]\text{Moles of AgCl} = \text{4.192 mmol NaCl} \times \dfrac{\text{1 mmol AgCl}}{\text{1 mmol NaCl}} = \text{4.192 mmol AgCl}[/tex]
From AgNO₃:
The molar ratio of AgNO₃ to AgCl is 1:1.
[tex]\text{Moles of AgCl} = \text{0.900 mmol AgNO}_{3} \times \dfrac{\text{1 mmol AgCl}}{\text{1 mmol AgNO}_{3}} = \text{0.900 mmol AgCl}[/tex]
AgNO₃ is the limiting reactant because it gives the smaller amount of AgCl.
4. Calculate the moles of excess reactant
Ag⁺(aq) + Cl⁻(aq) ⟶ AgCl(s)
I/mmol: 0.900 4.192 0
C/mmol: -0.900 -0.900 +0.900
E/mmol: 0 3.292 0.900
So, we end up with 50. mL of a solution containing 3.292 mmol of Cl⁻.
5. Calculate the concentration of Cl⁻
[tex]\text{[Cl$^{-}$] } = \dfrac{\text{3.292 mmol}}{\text{50. mL}} = \textbf{0.066 mol/L}\\\text{The concentration of chloride ion is $\large \boxed{\textbf{0.066 mol/L}}$}[/tex]