Respuesta :
Answer:
Step-by-step explanation:
Given
[tex]\frac{dc}{dt}=-\frac{Fc}{v} + \frac{I}{v}[/tex]
a.) [tex]\frac{dc}{dt}=-\frac{Fc+I}{v}\\\\\frac{dc}{dt}=-\frac{(-I+Fc)}{v}\\\\\frac{dc}{dt}=-\frac{-\frac{I}{F}+c}{\frac{v}{F}}=\frac{-F}{v}[c-\frac{I}{F}][/tex]
[tex]\frac{dc}{c-\frac{I}{F}}=\frac{-F}{v}dt[/tex]
Integrating;
ln[tex]c-\frac{I}{F}=\frac{-Ft}{v}+ k[/tex]
at t = 0; c = c0
ln[tex]c_0-\frac{I}{F}=k[/tex]
ln[tex]c-\frac{I}{F}=\frac{-Ft}{v}+ ln(c_0-\frac{I}{F}\\\\\frac{Ft}{v}=ln[\frac{c_0-\frac{I}{F}}{c-\frac{I}{F}}][/tex]
[tex]e^{\frac{Ft}{v}}=\frac{c_0-\frac{I}{F}}{c-\frac{I}{F}}\\\\c-\frac{I}{F}=(c_0-\frac{I}{F})e^{\frac{-Ft}{v}}\\\\c=(c_0-\frac{I}{F})e^{\frac{-Ft}{v}}+\frac{I}{F}[/tex]
B.) [tex]\lim_{t \to \infty} c(t)=(c_0 -\frac{I}{F})e^{-\infty}+\frac{I}{F}\\\\=0+\frac{I}{F}=\frac{I}{F}[/tex]
given [tex]I=0;c=c_0e^{\frac{-Ft}{v}}[/tex]
At [tex]c=\frac{c_0}{10};t=?[/tex]
[tex]\frac{c_0}{10}=c_0e^{\frac{-Ft}{v}}\\\\\frac{1}{10}=e^{\frac{-Ft}{v}}\\\\ln10=\frac{Ft}{v}\\\\t=\frac{vln10}{F}[/tex]
C.) [tex]t=\frac{458ln(10)}{175}=6.026[/tex]years≅6 years
D.) [tex]t=\frac{12221ln(10)}{65.2}=431.59[/tex]years≅432 years
(a) The concentration at any time [tex]t[/tex] is determined by [tex]C(t) = \left(C_{o}-\frac{I}{F} \right)\cdot e^{-\frac{F}{V}\cdot t } + \frac{I}{F}[/tex].
(b) The final concentration when [tex]t \to +\infty[/tex] is [tex]C_{\infty} =\frac{I}{V}[/tex].
(c) 6 years are needed to drop pollution to [tex]\frac{C_{o}}{10}[/tex] in the lake Eire.
(d) 432 years are needed to drop pollution to [tex]\frac{C_{o}}{10}[/tex] in the lake Superior.
How to determine a model for pollution effects in the Great Lakes
(a) The differential equation is equivalent to:
[tex]\frac{dC}{dt} +\frac{F}{V} \cdot C = \frac{I}{V}[/tex] (1)
Whose solution is [tex]C(t) = \left(C_{o}-\frac{I}{F} \right)\cdot e^{-\frac{F}{V}\cdot t }+\frac{I}{F}[/tex], where [tex]t[/tex] is the time, in minutes.
The concentration at any time [tex]t[/tex] is determined by [tex]C(t) = \left(C_{o}-\frac{I}{F} \right)\cdot e^{-\frac{F}{V}\cdot t } + \frac{I}{F}[/tex]. [tex]\blacksquare[/tex]
(b) [tex]e^{-\frac{F}{V}\cdot t } \to 0[/tex] inasmuch [tex]t \to + \infty[/tex], then we have that [tex]C_{\infty} = \frac{I}{V}[/tex].
The final concentration when [tex]t \to +\infty[/tex] is [tex]C_{\infty} =\frac{I}{V}[/tex]. [tex]\blacksquare[/tex]
(c) In this case, (1) is reduced into this form:
[tex]C(t) = C_{o}\cdot e^{-\frac{F}{V}\cdot t }[/tex] (2)
If we know that [tex]C(t) = \frac{C_{o}}{10}[/tex], then the time required is:
[tex]\frac{C_{o}}{10} = C_{o}\cdot e^{-\frac{F}{V}\cdot t }[/tex]
[tex]t = -\frac{V}{F}\cdot \ln \frac{1}{10}[/tex]
[tex]t \approx 6.026\,yr[/tex]
6 years are needed to drop pollution to [tex]\frac{C_{o}}{10}[/tex] in the lake Eire. [tex]\blacksquare[/tex]
(d) The final concentration in lake Superior is:
[tex]t = -\frac{V}{F}\cdot \ln \frac{1}{10}[/tex]
[tex]t\approx 431.593\,yr[/tex]
432 years are needed to drop pollution to [tex]\frac{C_{o}}{10}[/tex] in the lake Superior. [tex]\blacksquare[/tex]
To learn more on pollution, we kindly invite to check this verified question: https://brainly.com/question/1040743