Respuesta :

The solution for given expression is [tex]\frac{(z + 2y)}{4}[/tex]

Solution:

Given that rational expression is:

[tex]\frac{z^{2}+4 z y+4 y^{2}}{4 z+8 y}[/tex]

Taking "4" as common term from denominator,

[tex]\frac{z^{2}+4 z y+4 y^{2}}{4(z + 2y)}[/tex]  ------- eqn 1

Let us use a algebraic identity which is as follows:

[tex](a + b)^2 = a^2 + 2ab + b^2[/tex]

So, [tex]z^{2}+4 z y+4 y^{2}[/tex] can be expressed as:

[tex]z^{2}+4 z y+4 y^{2} = (z + 2y)^2[/tex]

Substitute the above equation in eqn 1,

[tex]\frac{(z + 2y)^2}{4(z + 2y)}[/tex]

Cancelling (z + 2y) in numerator and denominator

[tex]\rightarrow \frac{(z + 2y)}{4}[/tex]

Thus the solution for given expression is [tex]\frac{(z + 2y)}{4}[/tex]