Answer:
C. 0.0015
Step-by-step explanation:
Null hypothesis,
[tex]H_0:P_H=P_c[/tex]
Alternative hypothesis,
[tex]H_a:P_H>P_c[/tex]
Sample proportions:
[tex]P_H=\frac{18}{20+18}=0.473684\\\\P_c=\frac{6}{32+6}=0.157895[/tex]
Pooled proportion,
[tex]p=\frac{x+y}{n_1+n_2}=\frac{18+6}{76}=0.315789[/tex]
Under [tex]H_0[/tex], the test statistic is given by,
[tex]z_0=\frac{P_A-P_C}{\sqrt{P(1-P)(\frac{1}{n_1}+\frac{1}{n_2})}}\\\\==\frac{0.473684-0.157895}{\sqrt{0.315789(1-0.315789)(\frac{1}{38}+\frac{1}{38})}}=2.96[/tex]
Since the alternative hypothesis is two tailed, the p-value is given by,
p-value= P(z > 2.96)=1 - P(Z ≤ 2.96)=1 - 0.9985
(FROM Z TABLE)
P-value = 0.0015