Respuesta :

Answer:

x=30° or 210°

Step-by-step explanation:

The given equation is:

[tex]tanx-\sqrt{1-2tan^{2}x}=0[/tex]

Taking the second term to RHS we get

[tex]tanx=\sqrt{1-2tan^{2}x }[/tex]

Squaring both sides of the equation,we get

[tex]tan^{2}x=1-2tan^{2}x[/tex]

[tex]3tan^{2}x=1[/tex]

[tex]tan^{2}x=\frac{1}{3}[/tex]

∴tanx=±[tex]\frac{1}{\sqrt{3} }[/tex]

But tanx cannot be negative as RHS in the given equation will be positive always. Hence tanx=[tex]\frac{1}{\sqrt{3} }[/tex]

∴ x=30° or x=180°+30°=210° (As tan is positive in first and third quadrant)

Answer:

x = 30 or x = 210

Step-by-step explanation:

Given equation is:

[tex]\[\tan x - \sqrt{1 - 2*\tan ^{2} x} = 0\] [/tex]

Simplifying,

[tex]\[\tan x = \sqrt{1 - 2*\tan ^{2} x}\][/tex]

Squaring both sides,

[tex]\[\tan ^{2} x = 1 - 2*\tan ^{2} x\][/tex]

=> [tex]\[\tan ^{2} x + 2*\tan ^{2} x = 1\][/tex]

=> [tex]\[\3*\tan ^{2} x= 1\][/tex]

=> [tex]\[\tan x= \pm \frac{1}{\sqrt{3}}\][/tex]

Solving for x which satisfies the above equality and also 0 < x < 360,

x = 30 or x = 210