Respuesta :

Answer:

Length of the rectangle = 16 inches

Width of the rectangle = 12 inches

Step-by-step explanation:

Let the length of the rectangle be represented by x.

Then width can be expressed as [tex]\[\frac{x}{2}+4\] [/tex]

Perimeter of a rectangle is the sum of four sides of the rectangle.

This can be expressed as 2*(length + breadth)

= [tex]\[2* (x + \frac{x}{2}+4)\][/tex]

= [tex]\[2* (\frac{3x}{2}+4)\][/tex]

= [tex]\[3x + 8\][/tex]

But perimeter is given as 56.

So, [tex]\[3x + 8 = 56\] [/tex]

=> [tex]\[3x = 48\][/tex]

=> [tex]\[x = 16\][/tex]

Hence length of the rectangle = 16 inches

Width of the rectangle = [tex]\[\frac{16}{2}+4\][/tex] = 12 inches

Answer:

length = 16 inches and width = 12 inches

Step-by-step explanation:

Let l be the length and w be the width of the rectangle.

It is given that width is 4 inches greater than half of the length:

[tex]w=\frac{l}{2}+4[/tex] ------1

Perimeter of the rectangle is given by [tex]2\times(l+w)[/tex]

[tex]2\times(l+w)=56[/tex]

[tex]l+w=28[/tex]  ----------------2

Substituting w from equation 1 in equation 2, we get:

[tex]l+(4+\frac{l}{2})=28[/tex]

[tex]\frac{3l}{2}=24[/tex]

∴ l = 16 inches

Putting l=16 in equation 1, we get w=12.

Hence w= 12 inches.