Respuesta :

Answer:

The 2 roots are [tex]\sqrt{2} \ and \ -3\sqrt{2}[/tex].

Step-by-step explanation:

Given:

[tex]x^2+2\sqrt{2}x-6=0[/tex]

We need to find the roots of quadratic equation using quadratic formula.

For quadratic expression [tex]ax^2+bx+c=0[/tex]

Quadratic formula [tex]x= \frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In Given expression the values of a,b,c are;

[tex]a=1, b=2\sqrt{2},c=-6[/tex]

We will first find [tex]\sqrt{b^2-4ac}[/tex] by substituting the given values;

[tex]\sqrt{b^2-4ac}[/tex] = [tex]\sqrt{(2\sqrt{2})^2-4\times1\times(-6) } =\sqrt{(4\times2)+24} =\sqrt{8+24}=\sqrt{32}= \sqrt{16\times2}=\sqrt{(4)^2\times2}=4\sqrt{2}[/tex]

Now Substituting the above value in quadratic formula we get;

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}\\ \\x=\frac{-2\sqrt{2} \±4\sqrt{2} }{2\times1}\\\\x= \frac{2(-\sqrt{2} \±2\sqrt{2})}{2}\\\\x=-\sqrt{2} \±2\sqrt{2}[/tex]

Now we will find 2 different roots as;

[tex]x_1=-\sqrt{2} +2\sqrt{2}=\sqrt{2}\\x_2=-\sqrt{2} -2\sqrt{2}=-3\sqrt{2}[/tex]

Hence the 2 roots are [tex]\sqrt{2} \ and \ -3\sqrt{2}[/tex].