Respuesta :

r3t40

We have [tex]f(x)=\dfrac{x+5}{3x-1}[/tex].

To find inverse function [tex]f^{-1}(x)[/tex] we substitute x with [tex]f^{-1}(x)[/tex] and vice-versa to get

[tex]x=\dfrac{f^{-1}(x)+5}{3f^{-1}(x)-1}[/tex]

Now solve for [tex]f^{-1}(x)[/tex]. Note that I will use [tex]j[/tex] instead.

[tex]

x=\dfrac{j+5}{3j-1} \\

x(3j-1)=j+5 \\

3jx-x=j+5 \\

3jx-x-j-5=0 \\

3jx-j=x+5 \\

j(3x-1)=x+5 \\

j=\dfrac{x+5}{3x-1}

[/tex]

So we find that [tex]f(x)=f^{-1}[/tex].

Hope this helps.

Answer:

f-1(x) = (x + 5)/(3x - 1).

Step-by-step explanation:

Let y = (x + 5)/ (3x - 1)

3xy - y = x + 5

3xy - x = y + 5

x(3y - 1) = y + 5

x = (y + 5)/(3y - 1)

So f-1(x) = (x + 5)/(3x - 1).