Respuesta :

Answer:

The equation D has (1-i) as a solution

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

Option A

in this problem we have

[tex]x^{2} +2x-2=0[/tex]  

so

[tex]a=1\\b=2\\c=-2[/tex]

substitute in the formula

[tex]x=\frac{-2(+/-)\sqrt{2^{2}-4(1)(-2)}} {2(1)}[/tex]

[tex]x=\frac{-2(+/-)\sqrt{12}} {2}[/tex]

[tex]x=\frac{-2(+/-)2\sqrt{3}} {2}[/tex]

[tex]x=-1(+/-)\sqrt{3}[/tex]

Has two real solutions

Option B

in this problem we have

[tex]x^{2} +2x+2=0[/tex]  

so

[tex]a=1\\b=2\\c=2[/tex]

substitute in the formula

[tex]x=\frac{-2(+/-)\sqrt{2^{2}-4(1)(2)}} {2(1)}[/tex]

[tex]x=\frac{-2(+/-)\sqrt{-4}} {2}[/tex]

Remember that

[tex]i=\sqrt{-1}[/tex]

[tex]x=\frac{-2(+/-)2i} {2}[/tex]

[tex]x=-1(+/-)i[/tex]

[tex]x=-1+i[/tex]

[tex]x=-1-i[/tex]

Option C

in this problem we have

[tex]x^{2} -2x-2=0[/tex]  

so

[tex]a=1\\b=-2\\c=-2[/tex]

substitute in the formula

[tex]x=\frac{-(-2)(+/-)\sqrt{-2^{2}-4(1)(-2)}} {2(1)}[/tex]

[tex]x=\frac{2(+/-)\sqrt{12}} {2}[/tex]

[tex]x=\frac{2(+/-)2\sqrt{3}} {2}[/tex]

[tex]x=1(+/-)\sqrt{3}[/tex]

Has two real solutions

Option D

in this problem we have

[tex]x^{2} -2x+2=0[/tex]  

so

[tex]a=1\\b=-2\\c=2[/tex]

substitute in the formula

[tex]x=\frac{-(-2)(+/-)\sqrt{-2^{2}-4(1)(2)}} {2(1)}[/tex]

[tex]x=\frac{2(+/-)\sqrt{-4}} {2}[/tex]

Remember that

[tex]i=\sqrt{-1}[/tex]

[tex]x=\frac{2(+/-)2i} {2}[/tex]

[tex]x=1(+/-)i[/tex]

[tex]x=1+i[/tex]

[tex]x=1-i[/tex]

therefore

The equation D has (1-i) as a solution