Respuesta :
Hello,
y=ax^n
a=1
n=2k
f(x)=y=x^(2k)
A:
y'=2k*x^(2k-1)
if x<0 y'<0
if x>0 y'>0 ==>opens upwise
f(-1)=(-1)^(2k)=1
f(0)=0^(2k)=0
f(1)=1^(2k)=1 C is exact
y=x² has one intercept with x axis.
Answer C
f(-x)=(-x)^(2k)=((-x)^2)k=(x²)^k=x^(2k)
The graph is symmetric about y axis
y=ax^n
a=1
n=2k
f(x)=y=x^(2k)
A:
y'=2k*x^(2k-1)
if x<0 y'<0
if x>0 y'>0 ==>opens upwise
f(-1)=(-1)^(2k)=1
f(0)=0^(2k)=0
f(1)=1^(2k)=1 C is exact
y=x² has one intercept with x axis.
Answer C
f(-x)=(-x)^(2k)=((-x)^2)k=(x²)^k=x^(2k)
The graph is symmetric about y axis
Answer: C
The graph passes through (–1, 1), (0, 0), and (1, 1).
Step-by-step explanation:
