Respuesta :
For this case we have the following function:
[tex]f (x) = 3x ^ 4 - x ^ 3 + 3x ^ 2 + x - 3 [/tex]
By definition we have that the average rate of change is given by:
[tex]AVR = \frac{f(x2)-f(x1)}{x2-x1} [/tex]
We evaluate the function for the given interval:
For x = 0:
[tex]f (0) = 3 (0) ^ 4 - (0) ^ 3 + 3 (0) ^ 2 + (0) - 3 f (0) = - 3[/tex]
For x = 1:
[tex]f (1) = 3 (1) ^ 4 - (1) ^ 3 + 3 (1) ^ 2 + (1) - 3 f (1) = 3[/tex]
Substituting values we have:
[tex]AVR = \frac{3-(-3)}{1-0} [/tex]
Rewriting we have:
[tex]AVR = \frac{3+3}{1-0} [/tex]
[tex]AVR = \frac{6}{1} [/tex]
[tex]AVR =6[/tex]
Answer:
the average rate of change from x = 0 to x = 1 is:
[tex]AVR =6[/tex]
[tex]f (x) = 3x ^ 4 - x ^ 3 + 3x ^ 2 + x - 3 [/tex]
By definition we have that the average rate of change is given by:
[tex]AVR = \frac{f(x2)-f(x1)}{x2-x1} [/tex]
We evaluate the function for the given interval:
For x = 0:
[tex]f (0) = 3 (0) ^ 4 - (0) ^ 3 + 3 (0) ^ 2 + (0) - 3 f (0) = - 3[/tex]
For x = 1:
[tex]f (1) = 3 (1) ^ 4 - (1) ^ 3 + 3 (1) ^ 2 + (1) - 3 f (1) = 3[/tex]
Substituting values we have:
[tex]AVR = \frac{3-(-3)}{1-0} [/tex]
Rewriting we have:
[tex]AVR = \frac{3+3}{1-0} [/tex]
[tex]AVR = \frac{6}{1} [/tex]
[tex]AVR =6[/tex]
Answer:
the average rate of change from x = 0 to x = 1 is:
[tex]AVR =6[/tex]
Answer:
Average rat of change of function is 6 from x = 0 to x = 1.
Step-by-step explanation:
We are given a function:
[tex]f(x) = 3x^4 - x^3 + 3x^2 + x - 3[/tex]
The attached image shows the graph for the given function.
Average rate of change of function =
[tex]\text{Average rate of change} = \displaystyle\frac{\delta y}{\delta x} = \frac{f(b)-f(a)}{b-a}[/tex]
Now we will evaluate f(1) and f(0).
[tex]f(x) = 3x^4 - x^3 + 3x^2 + x - 3\\f(1) = 3(1)^4 - (1)^3 + 3(1)^2 + (1) - 3 = 3\\f(0) = 3(0)^4 - (0)^3 + 3(0)^2 + (0) - 3 = -3[/tex]
Putting the values, we get,
[tex]\text{Average rate of change} = \displaystyle\frac{f(1)-f(0)}{1-0}\\\\= \frac{3-(-3)}{1-0} = \frac{6}{1} = 6[/tex]
Thus, the average rat of change of function is 6 from x = 0 to x = 1.
