Respuesta :

Answer:0

Step-by-step explanation:

  • A. (sin θ - cos θ) - (sin θ + cos θ)² = sin θ - cos θ - 1 - sin 2θ
  • B. (sin θ - cos θ) - (sin θ + cos θ)² = - 2sin 2θ
  • C. (sin θ - cos θ) - (sin θ + cos θ)² = 2

Further explanation

We will simplify a form related to trigonometric identity.

For more practice and learning, this time we prepare three cases. Most likely one of them is included in the real question being asked.

Problem A

The Process:

[tex]\boxed{ \ (sin \theta - cos \theta) - (sin \theta + cos \theta)(sin \theta + cos \theta) \ }[/tex]

[tex]\boxed{ \ (sin \theta - cos \theta) - (sin^2 \theta + cos^2 \theta + 2sin \theta cos \theta) \ }[/tex]

Recall that [tex]\boxed{ \ sin^2\theta + cos^2\theta = 1 \ }[/tex]

[tex]\boxed{ \ (sin \theta - cos \theta) - (1 + 2sin \theta cos \theta) \ }[/tex]

Recall that [tex]\boxed{ \ 2sin \theta cos \theta = sin \ 2\theta \ }[/tex]

[tex]\boxed{ \ (sin \theta - cos \theta) - (1 + sin \ 2\theta) \ }[/tex]

Therefore, the result is [tex]\boxed{\boxed{ \ sin \theta - cos \theta - 1 - sin \ 2\theta \ }}[/tex]

Problem B

[tex]\boxed{ \ (sin \theta - cos \theta)^2 - (sin \theta + cos \theta)^2 =  \ ? \ }[/tex]

The Process:

[tex]\boxed{ \ (sin \theta - cos \theta)^2 - (sin \theta + cos \theta)^2 =  \ ? \ }[/tex]

Let's expand both squares.

[tex]\boxed{ \ (sin \theta - cos \theta)(sin \theta - cos \theta) - (sin \theta + cos \theta)(sin \theta + cos \theta) \ }[/tex]

[tex]\boxed{ \ sin^2 \theta + cos^2 \theta - 2sin \theta cos \theta - (sin^2 \theta + cos^2 \theta + 2sin \theta cos \theta) \ }[/tex]

[tex]\boxed{ \ sin^2 \theta + cos^2 \theta - 2sin \theta cos \theta - sin^2 \theta - cos^2 \theta - 2sin \theta cos \theta \ }[/tex]

[tex]\boxed{ \ - 2sin \theta cos \theta - 2sin \theta cos \theta \ }[/tex]

[tex]\boxed{ \ - 4sin \theta cos \theta \ }[/tex]

Recall that [tex]\boxed{ \ 2sin \theta cos \theta = sin \ 2\theta \ }[/tex]

[tex]\boxed{ \ - 2(2sin \theta cos \theta) \ }[/tex]

Therefore, the result is [tex]\boxed{ \ - 2sin \ 2\theta \ }[/tex]

Problem C

[tex]\boxed{ \ (sin \theta - cos \theta)^2 + (sin \theta + cos \theta)^2 =  \ ? \ }[/tex]

The Process:

[tex]\boxed{ \ (sin \theta - cos \theta)^2 + (sin \theta + cos \theta)^2 =  \ ? \ }[/tex]

Let's expand both squares.

[tex]\boxed{ \ (sin \theta - cos \theta)(sin \theta - cos \theta) + (sin \theta + cos \theta)(sin \theta + cos \theta) \ }[/tex]

[tex]\boxed{ \ sin^2 \theta + cos^2 \theta - 2sin \theta cos \theta + (sin^2 \theta + cos^2 \theta + 2sin \theta cos \theta) \ }[/tex]

[tex]\boxed{ \ sin^2 \theta + cos^2 \theta - 2sin \theta cos \theta + sin^2 \theta + cos^2 \theta + 2sin \theta cos \theta \ }[/tex]

Recall that [tex]\boxed{ \ sin^2\theta + cos^2\theta = 1 \ }[/tex]

[tex]\boxed{ \ 1 - 2sin \theta cos \theta + 1 + 2sin \theta cos \theta \ }[/tex]

Therefore, the result is [tex]\boxed{\boxed{ \ 2 \ }}[/tex]

Learn more

  1. What is 270° converted to radians https://brainly.com/question/3161884
  2. How does the vertical acceleration at point a compare to the vertical acceleration at point c  https://brainly.com/question/2746519
  3. About vector components https://brainly.com/question/1600633  

Keywords: simplify, (sin Θ − cos Θ) − (sin Θ + cos Θ)², (sin Θ − cos Θ)² − (sin Θ + cos Θ)², (sin Θ − cos Θ) + (sin Θ + cos Θ)², trigonometric identity,