A 0.0427 kg racquet-ball is moving
22.3 m/s when it strikes a
stationary box. The ball bounces
back at 11.5 m/s, while the box
moves forward at 1.53 m/s. What
is the mass of the box?
(Unit = kg)​

Respuesta :

Answer:

Mass of the box = 0.9433 kg

Explanation:

Mass of racket-ball [tex](m_1)[/tex] = 0.00427 kg

Velocity of racket-ball before collision [tex](v_{1i})[/tex] = 22.3 m/s

Velocity of racket-ball after collision with box [tex](v_{1f})[/tex] = -11.5 m/s

[Since ball is bouncing back, so velocity is taken negative.]

Velocity of the box before collision [tex]v_{2i}[/tex] = 0 m/s

[Since the box is stationary, so velocity is taken zero]

Velocity of box moving forward after collision [tex]v_{2f}[/tex]= 1.53 m/s

To find the mas of the box [tex]m_2[/tex].

By law of conservation of momentum we have:

Momentum before collision = Momentum after collision

This can be written as:

[tex]p_i=p_f[/tex]

[tex]m_1v_{1i}+m_2v_{2i}=m_1v_{1f}+m_2v_{2f}[/tex]

We can plugin the given value to find [tex]m_2[/tex]

[tex](0.0427\times 22.3)+(m_2\times 0)=(0.0427\times (-11.5))(m_2\times 1.53)[/tex]

[tex]0.9522+0=-0.4911+1.53m_2[/tex]

Adding both sides by 0.4911

[tex]0.9522+0.4911=-0.4911+0.4911+1.53m_2[/tex]

[tex]1.4433=1.53m_2[/tex]

Dividing both sides by 1.53.

[tex]\frac{1.4433}{1.53}=\frac{1.53m_2}{1.53}[/tex]

[tex]0.9433=m_2[/tex]

∴ [tex]m_2=0.9433[/tex] kg

Mass of the box = 0.9433 kg (Answer)