Respuesta :

Answer:

[tex]3a^4[/tex]

Step-by-step explanation:

What is the cube root of  [tex]27a^{12}[/tex]? This is the question.

We can write:

[tex]\sqrt[3]{27a^{12}}[/tex]

We will use the below property to simplify:

[tex]\sqrt[n]{a*b}=\sqrt[n]{a}  \sqrt[n]{b}[/tex]

So, we have:

[tex]\sqrt[3]{27a^{12}} =\sqrt[3]{27} \sqrt[3]{a^{12}}[/tex]

We will now use below property to further simplify:

[tex]\sqrt[n]{x} =x^{\frac{1}{n}}[/tex]

Thus, we have:

[tex]\sqrt[3]{27} \sqrt[3]{a^{12}} =3*(a^{12})^{\frac{1}{3}}[/tex]

We know power to the power rule:  [tex](a^z)^b=a^{zb}[/tex]

Now, we have:

[tex]3*(a^{12})^{\frac{1}{3}}\\=3*a^{\frac{12}{3}}\\=3a^4[/tex]

This is the correct answer:  [tex]3a^4[/tex]