Respuesta :

Answer:

m∠MKL = 10°

Step-by-step explanation:

Given:

Two angles are given:

m∠JIM = 120°

m∠ILK = 50°

The given angles are angle of triangle ΔIJK.

We know that the sum of the all angles of the triangle is 180°

So, m∠JIK + m∠ILK + m∠JKL = 180°

m∠JIM + m∠ILK + m∠JKL = 180°                    (m∠JIK = m∠JIM)  

Angle m∠JIM and angle m∠ILK is given, so we put the value of angles in above equation.

120° + 50° + m∠JKL = 180°

170° + m∠JKL = 180°

m∠JKL = 180° - 170°

m∠JKL = 10°

Since the longer diagonal bisects the interior angle of the kite therefore the m∠JKL = m∠MKL.

Therefore the m∠MKL = 10°.