Respuesta :

Answer:

The factors are x-2,[tex]x-\frac{2}{3}[/tex] and x+4

Therefore the expression can be written as [tex]3x^3+7x^2-18x+8=(x-2)(x-\frac{2}{3})(x+4)[/tex]

Step-by-step explanation:

Given expression is [tex]3x^3+7x^2-18x+8[/tex]

And also given that x-1 is one of the factors

i.e.,x-1=0

 x=1

To find the factors equate the given expression to zero

[tex]3x^3+7x^2-18x+8=0[/tex]

Using synthetic division to find the factors

1_|    3       7       -18        8

       0       3        10       -8

   ___________________

       3      10       -8         0

Therefore the quadratic equation is  [tex]3x^2+10x-8=0[/tex]

To find the factors of the above equation:

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Where a and b are coefficients of [tex]x^2[/tex] and x respectively

[tex]x=\frac{-10\pm\sqrt{10^2-4(3)(-8)}}{2(3)}[/tex] Where a=3 , b=10 and c=-8

[tex]=\frac{-10\pm\sqrt{100+96}}{6}[/tex]

[tex]=\frac{-10\pm\sqrt{196}}{6}[/tex]

[tex]=\frac{-10\pm14}{6}[/tex]

[tex]x=\frac{-10\pm14}{6}[/tex]

Therefore [tex]x=\frac{-10+14}{6}[/tex]  and [tex]x=\frac{-10-14}{6}[/tex]

[tex]x=\frac{4}{6}[/tex]  and [tex]x=\frac{-24}{6}[/tex]

Therefore [tex]x=\frac{2}{3}[/tex]  and [tex]x=-4[/tex]

Therefore the factors are x-2,[tex]x-\frac{2}{3}[/tex]  and x+4

[tex]3x^3+7x^2-18x+8=(x-2)(x-\frac{2}{3})(x+4)[/tex]