Respuesta :

Answer:

x= [tex]-2\pm \sqrt{11}[/tex]

Step-by-step explanation:

Here is the correct question: Using the quadratic formula to solve

x²+4x - 7. what are the values of x.

Solving by using quadratic formula.

Formula: [tex]\frac{-b\pm \sqrt{b^{2}-4(ac) } }{2a}[/tex]

∴  In the expression [tex]x^{2} +4x-7[/tex], we have a= 1, b= 4 and c= -7.

Now, subtituting the value in the formula.

=[tex]\frac{-4\pm \sqrt{4^{2}-4(1\times -7) } }{2\times 1}[/tex]

= [tex]\frac{-4\pm \sqrt{4^{2}-4(-7) } }{2}[/tex]

Opening parenthesis.

= [tex]\frac{-4\pm \sqrt{16+28 } }{2\times 1}[/tex]

= [tex]\frac{-4\pm \sqrt{44}}{2}[/tex]

We know 2²=4

= [tex]\frac{-4\pm \sqrt{2^{2}\times 11 }}{2}[/tex]              

we know √a²=a

= [tex]\frac{-4\pm 2 \sqrt{11 }}{2}[/tex]

Taking 2 as common in the expression.

= [tex]\frac{2(-2\pm \sqrt{11}) }{2}[/tex]

Cancelling 2

= [tex]-2\pm \sqrt{11}[/tex]

Hence we get, [tex]x=-2\pm\sqrt{11}[/tex]