Respuesta :

Answer:

The function f(x) is positive in the interval (-≠,-2.5) ∪ (1,∞)

Step-by-step explanation:

we have

[tex]f(x)=2x^{2}+3x-5[/tex]

This is a vertical parabola open upward (the leading coefficient is positive)

The vertex is a minimum

The coordinates of the vertex is the point (h,k)

step 1

Find the vertex of the quadratic function

Factor the leading coefficient 2

[tex]f(x)=2(x^{2}+\frac{3}{2}x)-5[/tex]

Complete the square

[tex]f(x)=2(x^{2}+\frac{3}{2}x+\frac{9}{16})-5-\frac{9}{8}[/tex]

[tex]f(x)=2(x^{2}+\frac{3}{2}x+\frac{9}{16})-\frac{49}{8}[/tex]

Rewrite as perfect squares

[tex]f(x)=2(x+\frac{3}{4})^{2}-\frac{49}{8}[/tex]

The vertex is the point (-\frac{3}{4},-\frac{49}{8})

step 2

Find the x-intercepts (values of x when the value of f(x) is equal to zero)

For f(x)=0

[tex]2(x+\frac{3}{4})^{2}-\frac{49}{8}=0[/tex]

[tex]2(x+\frac{3}{4})^{2}=\frac{49}{8}[/tex]

[tex](x+\frac{3}{4})^{2}=\frac{49}{16}[/tex]

take the square root both sides

[tex]x+\frac{3}{4}=\pm\frac{7}{4}[/tex]

[tex]x=-\frac{3}{4}\pm\frac{7}{4}[/tex]

[tex]x_1=-\frac{3}{4}+\frac{7}{4}=1[/tex]

[tex]x_2=-\frac{3}{4}-\frac{7}{4}=-2.5[/tex]

therefore

The function f(x) is negative in the interval (-2.5,1)

The function f(x) is positive in the interval (-≠,-2.5) ∪ (1,∞)

see the attached figure to better understand the problem

Ver imagen calculista