Respuesta :

Answer:

Part 1) [tex]x=\frac{10\sqrt{3}}{3}\ units[/tex]

Part 2) [tex]y=5\ units[/tex]

Step-by-step explanation:

step 1

Find the value of x

In the right triangle of the figure

[tex]sin(30^o)=\frac{(5\sqrt{3}/3)}{x}[/tex] ---> opposite side angle of 30 degrees divided by the hypotenuse

Remember that

[tex]sin(30^o)=\frac{1}{2}[/tex]

substitute

[tex]\frac{1}{2}=\frac{(5\sqrt{3}/3)}{x}[/tex]

solve for x

[tex]x=\frac{5\sqrt{3}}{3}(2)[/tex]

[tex]x=\frac{10\sqrt{3}}{3}\ units[/tex]

step 2

Find the value of y

In the right triangle of the figure

[tex]cos(30^o)=\frac{y}{x}[/tex] ---> adjacent side angle of 30 degrees divided by the hypotenuse

we have

[tex]x=\frac{10\sqrt{3}}{3}\ units[/tex]

[tex]cos(30^o)=\frac{\sqrt{3}}{2}[/tex]

substitute

[tex]\frac{\sqrt{3}}{2}=\frac{y}{\frac{10\sqrt{3}}{3}}[/tex]    

[tex]y=(\frac{\sqrt{3}}{2})(\frac{10\sqrt{3}}{3})[/tex]

[tex]y=5\ units[/tex]