A set of 15 different integers has median of 25 and a range of 25. What is greatest possible integer that could be in this set?A. 32B. 37C. 40D. 43E. 50

Respuesta :

Answer:

The correct option is D.

Step-by-step explanation:

It is given that a set of 15 different integers has median of 25 and a range of 25.

Median = 25

Median is the middle term of the data. Number of observations is 15, which is an odd number so median is

[tex](\frac{n+1}{2})th=(\frac{15+1}{2})th=8th[/tex]

8th term is 25. It means 7 terms are less than 25. Assume that those 7 numbers are 18, 19, 20, 21, 22, 23, 24. Largest possible minimum value of the data is 18.

Range = Maximum - Minimum

25 = Maximum - 18

Add 18 on both sides.

25+18 = Maximum

43 = Maximum

The greatest possible integer in this set 43.

Therefore, the correct option is D.