If a force of 163 newtons is applied to the end of the jack handle the end moves down 15 cm. If lifting part of the jac raises the car bumper 1.75 cm what force is the jack exerting on the bumper?

Respuesta :

The force exerted on the bumper is 1397 N

Explanation:

We can solve this problem by using the equilibrium of the torques: in fact, the torque exerted on one side of the jack must be equal to the torque exerted on the other side of the jack.

Therefore, we can write:

[tex]F_h d_h = F_b d_b[/tex]

where

[tex]F_h = 163 N[/tex] is the force applied to the end of the jack handle

[tex]d_h = 15 cm[/tex] is the distance between the force applied on the handle and the pivot

[tex]F_b[/tex] is the force exerted by the jack on the car bumper

[tex]d_b = 1.75 cm[/tex] is the distance between this force and the car bumper

And solving for [tex]F_b[/tex], we find:

[tex]F_b = \frac{F_h d_h}{d_b}=\frac{(163)(15)}{1.75}=1397 N[/tex]

Learn more about levers and torques:

brainly.com/question/5352966

#LearnwithBrainly