Respuesta :

Answer:

5.73 mg of the sample will be left in 25 days.

Explanation:

Given that:

Half life = 8 days

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac{ln\ 2}{8}\ days^{-1}[/tex]

The rate constant, k = 0.08664 days⁻¹

Time = 25 days

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration  = 50 mg

So,  

[tex][A_t]=50\times e^{-0.08664\times 25}\ mg[/tex]

[tex][A_t]=5.73\ mg[/tex]

5.73 mg of the sample will be left in 25 days.