Respuesta :

Answer:

B. [tex]\frac{1}{x^2y^7}[/tex]

Step-by-step explanation:

Given:

[tex](x^3y^{-2}z)(x^{-5}y^{-5}z^{-1})[/tex]

Hence Solving the given expression we get;

By Law of Indices which states;

[tex](a^xb^yc^z)(a^pb^qc^r) = a^{x+p}b^{y+q}c^{z+r}[/tex]

Hence we get;

[tex]x^{3+(-5)}y^{(-2)+(-5)}z^{1+(-1)}\\\\x^{3-5}y^{-2-5}z^{1-1}\\\\x^{-2}y^{-7}[/tex]

Also We know that

[tex]a^{-6} =\frac{1}{a^6}[/tex]

So,

[tex]\frac{1}{x^2y^7}[/tex]