Respuesta :

Answer:

[tex] \frac{1}{X} \sim log N(-\mu , \sigma^2)[/tex]

Step-by-step explanation:

For this case we know that the distribution for the random variable is given by:

[tex]X \sim logN(\mu ,\sigma^2)[/tex]

The density function for the log normal random variable is given by:

[tex] f)x,\sigma) = \frac{1}{x \sigma \sqrt{2\pi}}e^{- \frac{ln x^2}{2\sigma^2}}[/tex]

And we want to find the distribution for the random variable [tex]\frac{1}{X}[/tex]

In order to find this distribution we can use the cumulative distribution function like this:

Let [tex] Y= \frac{1}{X}[/tex], if we solve for X from this transformation we got:

[tex] X= \frac{1}{Y}[/tex]

And then we have this:

[tex] F_Y (y) = P(Y \leq y) = P(X \leq \frac{1}{y}) = F_X (\frac{1}{y})[/tex]

And we can find the density function as the derivate of the distribution function like this:

[tex] f_Y (y) = F'_Y (y) = -\frac{1}{y^2} f_Y(\frac{1}{y})[/tex]

[tex] f_Y (y)= -\frac{1}{y^2} \frac{1}{\frac{1}{y} \sigma \sqrt{2\pi}} e^{- \frac{ln(\frac{1}{y})^2}{2\sigma^2}}[/tex]

But we see that we don't have an specified form for the distribution

If we assume that X follows a normal distribution [tex] X\sim N (\mu_z,\sigma^2_z)[/tex] and we use the transformation [tex]X=e^Y[/tex] we see that X follows a log normal distribution. And we see that:

[tex]\frac{1}{X}= \frac{1}{e^Y}=e^{-Y}[/tex]

And if we find the distribution of [tex]e^{-y}[/tex] we got this:

[tex] f_Y (y) = F'_Y (y) = -e^{-y} f_Y(e^{-y})[/tex]

[tex] f_Y (y)= -e^{-y} \frac{1}{e^{-y} \sigma \sqrt{2\pi}} e^{- \frac{ln(e^{-y})^2}{2\sigma^2}}[/tex]

[tex] f_Y (y) = -\frac{1}{\sigma \sqrt{2\pi}}e^{\frac{y^2}{2\sigma^2}}[/tex]

And then we see that [tex]Y= \frac{1}{X} \sim log N(-\mu , \sigma^2)[/tex]