a circle is centered at the point 0,0 and has a radius of the square root of 53. Where does the point -3,-7 lie? I will give the brainiest Help Please

Respuesta :

Answer:

The point lie outside the circle

Step-by-step explanation:

step 1

Find the distance between the center of the circle and the given point

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

(0,0) and (-3,-7)

substitute the values

[tex]d=\sqrt{(-7-0)^{2}+(-3-0)^{2}}[/tex]

[tex]d=\sqrt{58}\ units[/tex]

step 2

Compare the distance with the radius

If d=r ----> the point lie on the circle

If d > r -----> the point lie outside the circle

If d < r -----> the point lie inside the circle

we have

[tex]d=\sqrt{58}\ units[/tex]

[tex]r=\sqrt{53}\ units[/tex]

so

[tex]\sqrt{58}\ units > \sqrt{53}\ units[/tex]

[tex]d > r[/tex]

therefore

The point lie outside the circle