Answer:
a) 90 kg
b) 68.4 kg
c) 0 kg/L
Explanation:
Mass balance:
[tex]-w=\frac{dm}{dt}[/tex]
w is the mass flow
m is the mass of salt
[tex]-v*C=\frac{dm}{dt}[/tex]
v is the volume flow
C is the concentration
[tex]C=\frac{m}{V+(6-3)*L/min*t}[/tex]
[tex]-v*\frac{m}{V+(6-3)*L/min*t}=\frac{dm}{dt}[/tex]
[tex]-3*L/min*\frac{m}{2000L+(3)*L/min*t}=\frac{dm}{dt}[/tex]
[tex]-3*L/min*\frac{dt}{2000L+(3)*L/min*t}=\frac{dm}{m}[/tex]
[tex]-3*L/min*\int_{0}^{t}\frac{dt}{2000L+(3)*L/min*t}=\int_{90kg}^{m}\frac{dm}{m}[/tex]
[tex]-[ln(2000L+3*L/min*t)-ln(2000L)]=ln(m)-ln(90kg)[/tex]
[tex]-ln[(2000L+3*L/min*t)/2000L]=ln(m/90kg)[/tex]
[tex]m=90kg*[2000L/(2000L+3*L/min*t)][/tex]
a) Initially: t=0
[tex]m=90kg*[2000L/(2000L+3*L/min*0)]=90kg[/tex]
b) t=210 min (3.5 hr)
[tex]m=90kg*[2000L/(2000L+3*L/min*210min)]=68.4kg[/tex]
c) If time trends to infinity the division trends to 0 and, therefore, m trends to 0. So, the concentration at infinit time is 0 kg/L.