Incomplete Question, the complete question is
Solve the triangle.
B = 73°, b = 15, c = 10
A. C = 39.6°, A = 67.4°, a ≈ 14.5
B. Cannot be solved
C. C = 44.8°, A = 62.4°, a ≈ 14.5
D. C = 39.6°, A = 67.4°, a ≈ 20.3
Answer:
The Answer is the option A
A. C = 39.6°, A = 67.4°, a ≈ 14.5
Step-by-step explanation:
Given:
In Δ ABC,
∠B = 73°
b = 15
c = 10
To Find:
∠A = ?
∠B = ?
a = ?
Solution:
IN Δ ABC, Sine Rule says that
[tex]\dfrac{a}{\sin A}= \dfrac{b}{\sin B}= \dfrac{c}{\sin C}[/tex]
Substituting the given values we get
[tex]\dfrac{15}{\sin 73}= \dfrac{10}{\sin C}\\\\\sin C=0.6375\\\therefore C=39.6\°[/tex]
Triangle sum property:
In a Triangle sum of the measures of all the angles of a triangle is 180°.
[tex]\angle A+\angle B+\angle C=180\\\\73+39.6+\angle A=180\\\therefore m\angle A =180-112.6=67.4\°[/tex]
∴ [tex]\dfrac{a}{\sin A}= \dfrac{b}{\sin B}[/tex]
Substituting the given values we get
∴ [tex]\dfrac{a}{\sin 67.4}= \dfrac{15}{\sin 73}\\\\\therefore a=14.48\approx14.5[/tex]
Therefore,
A. ∠C = 39.6°, ∠A = 67.4°, a ≈ 14.5