Respuesta :

Incomplete Question, the complete question is

Solve the triangle.

B = 73°, b = 15, c = 10  

A. C = 39.6°, A = 67.4°, a ≈ 14.5

B. Cannot be solved

C. C = 44.8°, A = 62.4°, a ≈ 14.5

D. C = 39.6°, A = 67.4°, a ≈ 20.3

Answer:

The Answer is the option A

A. C = 39.6°, A = 67.4°, a ≈ 14.5

Step-by-step explanation:

Given:

In Δ ABC,

∠B = 73°

b = 15

c = 10

To Find:

∠A = ?

∠B = ?

a = ?

Solution:

IN Δ ABC,  Sine Rule says that

[tex]\dfrac{a}{\sin A}= \dfrac{b}{\sin B}= \dfrac{c}{\sin C}[/tex]

Substituting the given values we get

[tex]\dfrac{15}{\sin 73}= \dfrac{10}{\sin C}\\\\\sin C=0.6375\\\therefore C=39.6\°[/tex]

Triangle sum property:

In a Triangle sum of the measures of all the angles of a triangle is 180°.

[tex]\angle A+\angle B+\angle C=180\\\\73+39.6+\angle A=180\\\therefore m\angle A =180-112.6=67.4\°[/tex]

∴ [tex]\dfrac{a}{\sin A}= \dfrac{b}{\sin B}[/tex]

Substituting the given values we get

∴ [tex]\dfrac{a}{\sin 67.4}= \dfrac{15}{\sin 73}\\\\\therefore a=14.48\approx14.5[/tex]

Therefore,

A.  ∠C = 39.6°, ∠A = 67.4°, a ≈ 14.5